Stochastic reduction method for biological chemical kinetics using time-scale separation.

نویسندگان

  • Chetan D Pahlajani
  • Paul J Atzberger
  • Mustafa Khammash
چکیده

Many processes in cell biology encode and process information and enact responses by modulating the concentrations of biological molecules. Such modulations serve functions ranging from encoding and transmitting information about external stimuli to regulating internal metabolic states. To understand how such processes operate requires gaining insights into the basic mechanisms by which biochemical species interact and respond to internal and external perturbations. One approach is to model the biochemical species concentrations through the van Kampen Linear Noise Equations, which account for the change in biochemical concentrations from reactions and account for fluctuations in concentrations. For many systems, the Linear Noise Equations exhibit stiffness as a consequence of the chemical reactions occurring at significantly different rates. This presents challenges in the analysis of the kinetics and in performing efficient numerical simulations. To deal with this source of stiffness and to obtain reduced models more amenable to analysis, we present a systematic procedure for obtaining effective stochastic dynamics for the chemical species having relatively slow characteristic time scales while eliminating representations of the chemical species having relatively fast characteristic time scales. To demonstrate the applicability of this multiscale technique in the context of Linear Noise Equations, the reduction is applied to models of gene regulatory networks. Results are presented which compare numerical results for the full system to the reduced descriptions. The presented stochastic reduction procedure provides a potentially versatile tool for systematically obtaining reduced approximations of Linear Noise Equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction and solution of the chemical master equation using time scale separation and finite state projection.

The dynamics of chemical reaction networks often takes place on widely differing time scales--from the order of nanoseconds to the order of several days. This is particularly true for gene regulatory networks, which are modeled by chemical kinetics. Multiple time scales in mathematical models often lead to serious computational difficulties, such as numerical stiffness in the case of differenti...

متن کامل

Stochastic Reduction Methods for Biological Chemical Kinetics using Time-Scale Separation

Many processes in cell biology process information and enact responses by modulating the concentrations of biological molecules. Such modulations serve functions ranging from encoding and transmitting information about external stimuli to regulating internal metabolic states. To understand how such processes operate requires gaining insights into the basic mechanisms by which biochemical specie...

متن کامل

Approximation and inference methods for stochastic biochemical kinetics - a tutorial review

Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the Chemical Master Equation. Despite its simple structure, no analytic solutions to the Chemical Master Equation are known for most s...

متن کامل

Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics

A version of the time-parallel algorithm parareal is analyzed and applied to stochastic models in chemical kinetics. A fast predictor at the macroscopic scale (evaluated in serial) is available in the form of the usual reaction rate equations. A stochastic simulation algorithm is used to obtain an exact realization of the process at the mesoscopic scale (in parallel). The underlying stochastic ...

متن کامل

Total Acid Number Reduction of Naphthenic Acid Using Subcritical Methanol: A Kinetic Study

The aim of this study is to explore the capability of subcritical methanol to reduce the acidity of naphthenic acids and to determine reaction kinetics for large-scale reactor design.The experiments were carried out in a 25 mL autoclave reactor (China) at temperatures of 70-120oC, Methanol Partial Pressures (MPPs) of 0.1-1.5 MPa, and reaction times of 0-60 min. The total...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 272 1  شماره 

صفحات  -

تاریخ انتشار 2011